| | Flow conditions:
Re < 2300 : Laminar flow 2300 < Re < 4000 : Transition zone Re > 4000 : Turbulent flow |
| | Q : Flow discharge [m³/s] A : Wet area [m²] P : Wet perimeter [m] D0 : Pipe diameter [m] V : Flow velocity [m/sn] R : Hydraulic radius [m] D : Hydraulic depth [m] Re : Reynold number [-] ν : Kinematic viscosity [0.000001004 m²/sn] |
Energy equation (Bernoulli) |
| | E : Total energy [m] ΔH : Energy loss [m] H : Piezometric level [m] P : Pressure [m] Z : Flow level [m] L : Flow line length [m] V : Flow velocity [m/s] S : Slope [-] g : Gravitational acceleration [9.81 m²/s] γ : Specific weight [20°C : 9.789 kN/m³] |
| | ΔH : Total loss [m] ΔHF : Friction loss [m] ΔHM : Minor losses [m] L : Flow line length [m] J : Unit friction loss [m/m] K : Local loss coefficient [-] V : Flow velocity [m/s] g : Gravitational acceleration [9.81 m²/s] |
Friction loss / Darcy-Weisbach formula |
| | J : Unit friction loss [m/m] V : Flow velocity [m/s] D : Hydraulic depth [m] g : Gravitational acceleration [9.81 m²/s] f : Friction coefficient [-] Re : Reynold number [-] |
| | Ks : Equivalent roughness height [m] ---------------------------------------- Plastic pipe : Ks=0.0015 mm Ductile iron pipe : Ks=0.26 mm Steel pipe : Ks=0.045 mm |
Friction loss / William-Hazen formula |
| | J : Unit friction loss [m/m] Q : Flow discharge [m³/s] D : Pipe inner diameter [m] C : Friction coefficient [-] ------------------------------ Plastic pipe : C=140 Ductile iron pipe : C=140 Steel pipe : C=110 |
|